Caudatosides A-F: New Iridoid Glucosides from Citharexylum caudatum

Sloan Ayers and Albert T. Sneden*

Department of Chemistry, Virginia Commonwealth University, P.O. Box 842006, Richmond, Virginia 23284-2006
Received May 3, 2002
Six new iridoid glucosides, caudatosides A-F (2-7), and oneknown iridoid glucoside, 5-deoxypulchelloside I (1), were isolated from the fruits of Citharexylum caudatum. The structures of these compounds were elucidated by various one- and two-dimensional NMR techniques as well as high-resolution negative-ion ESIMS. Other plant parts were extracted on a small scale, and TLC of these extracts revealed the presence of the same iridoids.

Citharexylum caudatum L. (Verbenaceae) is a large shrub originally found in the Caribbean, Mexico, and Central America. The plant was later introduced to H awaii, where it has flourished and is considered a pest plant. ${ }^{1} \mathrm{C}$. caudatum has been used as an emmenagogue, as an abortifacient, and as a pectoral in traditional medicine. The fruits have been used by natives to make beverages and are a food source for birds. ${ }^{1}$ Recently, extracts of this plant were screened for activity against leishmania, and an extract from the fruits showed limited activity.

I ridoids are monoterpenes that are usually glucosylated and are widespread in Verbenaceae. ${ }^{2}$ This class of compound has been shown to exhibit a wide range of biol ogical activities ${ }^{3}$ and has been found in other members of the Citharexylum genus, in C. fruiticosum ${ }^{4,5}$ and, more recently, in C. quadrangular. ${ }^{6}$ C. fruiticosum and C. quadrangular are apparently the only members of the genus that have been chemi cally investigated. The current work is the first investigation of C. caudatum and is also apparently the first investigation of the fruits of any member of the Verbenaceae family outside of the genus Vitex.

Results and Discussion

Dried, ground fruits of C. caudatum (1 kg) were sequentially extracted with petroleum ether, chloroform, acetone, and 95% ethanol. The acetone extract was fractionated initially by silica gel column chromatography, and further separation was carried out by reversed-phase $\left(\mathrm{C}_{18}\right)$ flash chromatography to give iridoid glucosides 1-5. Preparative RP-TLC was used to isolate 6 and 7.

The separation of $\mathbf{2}$ and $\mathbf{3}$ from each other, as well as separation of $\mathbf{6}$ and $\mathbf{7}$ from each other, proved difficult, presumably due to facile acyl transfer of the phenylpropanoid ester from the 0-6 to the 0-7 and vice versa, especially in aqueous conditions. (I nterestingly, this phenomenon was not a problem in the separation of 4 and 5 from each other.) These pairs of compounds could not be separated from each other by normal-phase silica gel chromatography, except on a small scale by HPLC. Separation of 2-5 on a large scale was accomplished by rapid reversed-phase column chromatography to avoid acyl transfer facilitated by the aqueous conditions required for separation. To separate 6 from 7, preparative RP-TLC was employed, with the eluting mobile phase modified with 0.1% trifluoroacetic acid. To avoid acyl transfer catalyzed by residual acid, NaHCO_{3} was added to the scraped PTLC bands prior to adding the solvent used to extract the pure 6 and 7 from the silica gel.

[^0]

	\mathbf{R}_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}
$\mathbf{1}$	-H	-H	-H
$\mathbf{2}$	-Cin	-H	-H
$\mathbf{3}$	-H	-Cin	-H
$\mathbf{4}$	-Cou	-H	-H
$\mathbf{5}$	-H	-Cou	-H
$\mathbf{6}$	-Caf	-H	-H
$\mathbf{7}$	-H	-Caf	-H
$\mathbf{8}$	-Ac	-Ac	-Ac
$\mathbf{9}$	-Cin	-Ac	-Ac
$\mathbf{1 0}$	-Ac	-Cin	-Ac
$\mathbf{1 1}$	-CouAc	-Ac	-Ac
$\mathbf{1 2}$	-Ac	-CouAc	-Ac
$\mathbf{1 3}$	-CafAc	-Ac	-Ac
$\mathbf{1 4}$	-Ac	-CafAc	-Ac

Caf-

CouAc-

CafAc-

Compound 1 was determined to have the formula $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{11}$ from the parent ion at $\mathrm{m} / \mathrm{z} 405.14[\mathrm{M}-\mathrm{H}]^{-}$in the negative ion low-resolution ESI MS and was determined to be an iridoid by the presence of diagnostic peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1). The structure of $\mathbf{1}$ was confirmed by comparison of the ${ }^{1} \mathrm{H}$ NMR data to data of known iridoids and determined to be 5-deoxypulchelloside I, first isolated from the leaves of C. fruiticosum. ${ }^{5}$

The ${ }^{1} \mathrm{H}$ NMR data of the remaining six compounds, 2-7, were similar to the ${ }^{1} \mathrm{H}$ NMR data of 1 except for the

Table 1. ${ }^{1} \mathrm{H}$ NMR Data for Compounds $\mathbf{1 - 7}\left(300 \mathrm{MHz}\right.$, chemical shifts in δ, coupling constants in $\mathrm{Hz}, \mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O}, \mathbf{2}-\mathbf{7}$ in acetone- d_{6})

presence of new signals in the aromatic region consistent with a phenylpropanoid moiety, as well as a large downfield shift of either the $\mathrm{H}-6$ or $\mathrm{H}-7$, indicating esterification of the phenylpropanoid group at one of these positions.

Caudatoside A (2) was shown to have the molecular formula $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{12}$ by analysis of the negative ion high-resolution ESIMS (m/z $\left.571.1492[\mathrm{M}+\mathrm{Cl}]^{-}\right)$. The ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{2}$ (Table 1) were very similar to the ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{1}$ except for new signals in the aromatic region and the large downfield shift of $\mathrm{H}-6$ to $\delta 5.40$, indicating esterification of $0-6$. The signals in the aromatic region are typical of a cinnamoyl ester, which was sited at C-6, due to the downfield shift of H-6. The glycosyl moiety at C-1 was confirmed as a glucopyranosyl moiety from the coupling constant data of the pentaacetate $\mathbf{9}$ (Table 2) prepared from $\mathbf{2}$.

The stereochemistry of $\mathbf{2}$ was determined by comparison of chemical shifts and coupling constants to literature data and by analysis of the ROESY spectrum. The relationship of $\mathrm{H}-5$ to $\mathrm{H}-9$ was determined to be cis from the coupling constant (8.9 Hz), which is larger in trans-fused iridoids ($\sim 12-13 \mathrm{~Hz}$). ${ }^{7,8}$ In most iridoids, the configuration of the 1-glucose, $\mathrm{H}-5$, and $\mathrm{H}-9$ is β, and the ${ }^{13} \mathrm{C}$ NMR chemical shifts of C-1 and C-1' are typically $\delta 93-98$ and $97-101$, respectively. When the configuration at these three positions is α, the shifts of $\mathrm{C}-1$ and $\mathrm{C}-1^{\prime}$ are, on average, $5-6$ ppm further downfield. ${ }^{9,10}$ The ${ }^{13} \mathrm{C}$ NMR data for all seven compounds reported here (Table 3) indicate the normal β stereochemistry for the 1-glucose, $\mathrm{H}-5$, and $\mathrm{H}-9$.

The stereochemistry at C-6, C-7, and C-8 was determined from the ROESY spectrum. Correlations (Figure 1) from the $\mathrm{H}-1$ to $\mathrm{CH}_{3}-10$, from $\mathrm{CH}_{3}-10$ to $\mathrm{H}-7$, and from $\mathrm{H}-7$ to $\mathrm{H}-6$ indicate that these protons are all on the same face of the molecule. The $\mathrm{H}-8$ and $\mathrm{H}-9$ correlate to one another, but $\mathrm{H}-8$ did not correlate to $\mathrm{H}-7$, indicating that $\mathrm{H}-8$ and $\mathrm{H}-9$ were on the opposite face of the molecule from $\mathrm{H}-1$, $\mathrm{H}-6, \mathrm{H}-7$, and $\mathrm{CH}_{3}-10$. The $\mathrm{H}-6$ did not correlate to $\mathrm{H}-5$, confirming that $\mathrm{H}-5$ is on the same face as $\mathrm{H}-8$ and $\mathrm{H}-9$. From these data, compound 2 was determined to be 6-cinnamoyl-5-deoxypulchellosideI, named caudatosideA.

Caudatoside B (3) was shown to have the same molecular formula as $2, \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{12}$, by analysis of the negative ion high-resolution ESIMS ($\mathrm{m} / \mathrm{z} 571.1522[\mathrm{M}+\mathrm{Cl}]^{-}$). The ${ }^{1} \mathrm{H}$ NMR data of 3 (Table 1) were similar to the ${ }^{1} \mathrm{H}$ NMR data of 2 except for the large upfield shift of H-6 and the downfield shift of $\mathrm{H}-7$, indicating esterification at the $\mathrm{O}-7$ instead of O-6. The aromatic regions of $\mathbf{2}$ and $\mathbf{3}$ were essentially identical. After acetylation of $\mathbf{3}$ to give 10, the ${ }^{1}$ H NMR spectrum of $\mathbf{1 0}$ (Table 2) again confirmed that the C-1 glycosyl moiety was a glucopyranosyl group. The stereochemistry of $\mathbf{3}$ was confirmed as described for $\mathbf{2}$. From these data, compound $\mathbf{3}$ was determined to be 7 -cinnamoyl-5-deoxypulchelloside I, named caudatoside B.

Caudatoside C (4) was shown to have the molecular formula $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{13}$ by analysis of the negative ion highresolution ESIMS (m/z $551.1723[\mathrm{M}-\mathrm{H}]^{-}, 587.1544[\mathrm{M}+$ Cl^{-}). The ${ }^{1} \mathrm{H}$ NMR data of 4 (Table 1) were essentially identical to the ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{2}$ except for the aromatic region. The signals in the aromatic region clearly indicate the presence of a p-substituted phenylpropanoid. The HM BC spectrum showed a correlation between the methyl proton signal at $\delta 3.63$ and the carbonyl carbon signal at δ 166.87, confirming that the methyl group was part of a methyl ester at C-4. Thus, the phenylpropanoid moiety was shown to be a p-coumaryl ester and not a p-methoxycinnamoyl ester. This ester was sited at C-6, on the basis of the chemical shift of $\mathrm{H}-6(\delta 5.38)$ in the ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1). The glucopyranosyl moiety at C-1 was confirmed as described for $\mathbf{2}$ and 3, as was the stereochemistry. From these data, compound 4 was determined to be 6 -p-cou-maryl-5-deoxypulchelloside I, named caudatoside C.

Caudatoside D (5) was shown to have the same molecular formula as $4, \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{13}$, by analysis of the negative ion high-resolution ESIMS (m/z 551.1797 [M - H] ${ }^{-}$, $587.1612\left[\mathrm{M}+\mathrm{Cl}^{-}\right)$. The ${ }^{1} \mathrm{H}$ NMR data of 5 (Table 1) were essentially identical to the ${ }^{1} \mathrm{H}$ NMR data of 3 except for the aromatic region, indicating substitution at $0-7$. The resonances in the aromatic region were identical to those of $\mathbf{4}$, confirming the presence of a p-coumaryl group. The

Table 2. ${ }^{1} \mathrm{H}$ NMR Data for Acetates $\mathbf{8 - 1 4}\left(300 \mathrm{MHz}\right.$, chemical shifts in δ, coupling constants in $\left.\mathrm{Hz}, \mathrm{CDCl}_{3}\right)$

proton	8	9	10	11	12	13	14
1	5.37, d, J 1,9 $=1.8$	5.41, d, J 1,9 $=1.8$	5.41, d, J 1,9 $=1.5$	5.41, d, J 1,9 $=1.8$	5.40, d, J $1,9=1.2$	5.41, d, J $1.9=1.8$	5.40, d, J 1,9 = 1.2
3	7.40, d, J $\mathrm{J}_{3,5}=0.6$	7.43, d, J ${ }_{3,5}=0.9$	7.43, d, J ${ }_{3,5}=<0.6$	7.43, d, J $\mathrm{J}, 5^{\text {, }}=1.2$	7.42, $\mathrm{d},^{\text {J }} \mathrm{J}_{3,5}=0.9$	7.44, d, (obscured by $2^{\prime \prime}$)	7.42, d, J ${ }_{3,5}=<0.6$
5	2.96, ddd, J $5,3=0.6$	$\begin{aligned} & 3.08, \text { ddd, } \\ & J_{5,3}=0.9 \\ & \mathrm{~J}_{5,6}=2.0, \\ & \mathrm{~J}_{5,9}=9.3 \end{aligned}$	3.02, ddd, J $5_{5,3}=<0.6$	3.07, ddd, J 5,3 $=1.2$	3.01, ddd, J 5,3 $=0.6$	$\begin{gathered} \text { by } 2^{\prime 2 \prime} \\ 3.07, d^{2}, J_{5,3}=1.5 \end{gathered}$	3.01, ddd, J 5,3 $=0.9$
	$\mathrm{J}_{5,6}=1.2, \mathrm{~J} 5.9=9.3$		$\mathrm{J}_{5,6}=2.0, J_{5,9}=9.3$	$\mathrm{J}_{5,6}=1.8, \mathrm{~J}_{5,9}=9.3$	$\mathrm{J}_{5,6}=1.8, \mathrm{~J}_{5,9}=9.3$	$\mathrm{J}_{5,6}=2.1, J_{5,9}=9.3$	J 5.6 $=1.8$, J 5,9 $=9.3$
6	$5.39, \mathrm{dd}, \mathrm{J}_{6.5}=1.2$	$\begin{aligned} & 5.53,9 \mathrm{dd}, \\ & \int_{6,5}^{5}=2.0 \end{aligned}$	$5.48, \mathrm{dd}, \mathrm{J}_{6,5}=2.0$	$5.53, \mathrm{dd}, \mathrm{J}_{6,5}=1.8$	$5.47, d d^{\prime} \mathrm{J}_{6,5}=1.8$	$5.52, \mathrm{dd}, \mathrm{J}_{6.5}=2.1$	5.47, dd, J $6.5=1.8$
	$\begin{aligned} & J_{6.7}=2.7 \\ & 4.80, d d, J 7,6=2.7 \end{aligned}$	$\begin{gathered} \mathrm{J}_{6,7}=4.1 \\ 4.88, \mathrm{dd} \\ \mathrm{~J}, 6=4.1 \end{gathered}$	$\begin{aligned} & \mathrm{J}_{6.7}=4.1 \\ & 4.98, \mathrm{dd}, \mathrm{~J} 7,6=4.1 \end{aligned}$	$\begin{aligned} & \mathrm{J}_{6.7}=3.9 \\ & 4.88, \mathrm{dd}, \mathrm{~J} 7.6=3.9 \end{aligned}$	$\begin{aligned} & J_{6.7}=4.2 \\ & 4.97, d d, J_{7,6}=4.2 \end{aligned}$	$\begin{aligned} & J_{6.7}=3.9 \\ & 4.88, d d, J_{7.6}=3.9 \end{aligned}$	$\begin{aligned} & J_{6,7}=4.2 \\ & 4.96, d d, J_{7,6}=4.2 \end{aligned}$
7							
8	$\begin{aligned} & \mathrm{J}_{2.48, ~}^{7.4 \mathrm{dq}, \mathrm{~J}}{ }_{8,7}=8.7 \end{aligned}$	$\begin{gathered} \mathrm{J} 7.8=8.9 \\ 2.57, \mathrm{ddq}, \\ \mathrm{~J}_{8,7}=8.9 \end{gathered}$	$\begin{aligned} & \mathrm{J} 7,8=\mathrm{obsc} . \\ & 2.58, \mathrm{ddq}, \mathrm{~J}, 7=\mathrm{obsc} . \end{aligned}$	$\begin{aligned} & \mathrm{J}_{2.86}=8.7 \\ & . \mathrm{ddq}^{2} \mathrm{~J} .7=8.7 \end{aligned}$	$\begin{aligned} & \mathrm{J} 7,8=\mathrm{obsc} . \\ & 2.58, \mathrm{ddq}, \mathrm{~J}, 7=\mathrm{obsc} . \end{aligned}$	$\begin{aligned} & \mathrm{J}_{2.54, ~}^{7.8}=8.7 \\ & \text { dq, } \mathrm{J}_{8,7}=8.7 \end{aligned}$	$\begin{aligned} & \mathrm{J} 7.8=\mathrm{obsc} . \\ & 2.57, \mathrm{ddq}, \end{aligned}$
	$\text { 2.91, ddd, J }{ }_{9,1}=1.8$	$\begin{aligned} & 8,9=9.3, \\ & J_{8,1}=7.2 \end{aligned}$	$\mathrm{J}_{8,9}=9.3$, $\mathrm{f}_{8,10}=7.2$	$\mathrm{J}_{8,9}=9.6, \mathrm{~J}_{8,10}=7.2$	$\mathrm{J}_{8,9}=9.3, \mathrm{~J}_{8,10}=7.2$	$\mathrm{J}_{8,9}=9.3 \mathrm{~J}_{8,10}=7.2$	$\mathrm{J}_{8,9}=9.3, \mathrm{~J}_{8,10}=7.5$
9		$\begin{gathered} 3.00, \text { ddd, } \\ \int_{9,1}=1.8 \end{gathered}$	2.97, ddd, J 9,1 $=1.5$	2.99, ddd, J 9,1 $=1.8$	2.97, ddd, J $9,1=1.2$	2.98, ddd	2.97, ddd, J $\mathrm{g}, 1^{=1.2}$
	=9.3, J 9,8 $=9.6$		=9.3, J 9,8 $=9.3$	${ }_{\text {, } 5}=9.3, \mathrm{~J} 9,8=9.6$	$\mathrm{J}_{9,5}=9.3, \mathrm{~J} 9.8=9.3$	$\mathrm{J}_{9,5}=9.3, \mathrm{~J} 9.8=9.3$	$\mathrm{J}_{9,5}=9.3, \mathrm{~J} 9,8=9.3$
10	1.05, d, J $10.8=7.5$	$\begin{gathered} 1.09, d_{d,}^{9.8} \\ J_{d 0,8}^{10,8}=7.2 \end{gathered}$		$1.09, d^{\prime} J_{10.8}=7.2$	1.10, $\mathrm{d},^{\mathrm{J}_{10,8}=7.2}$	1.09, d, J ${ }_{10,8}=7.2$	
$1{ }^{\prime}$	4.80, d, $\mathrm{J}_{1,2}=8.4$	$\begin{aligned} & 4.83, d, \\ & J_{1}^{1}, 2=8.2 \end{aligned}$	4.84, d, $\mathrm{J}_{1,2}=8.4$		4.83, $\mathrm{d}, \mathrm{J}_{\mathrm{J}_{1,2}=8.4}$		4.83, d, J $1^{\prime}, 2=8.4$
2^{\prime}	4.95, dd, J ${ }_{2,1}=8.4$	4.97, dd, $\mathrm{J}_{2,1}, \mathrm{r}=8.4$	4.98, dd, J ${ }_{2,1}=8.4$	4.97, dd, J ${ }_{2,1}=8.4$	4.98, dd, J $\mathrm{r}_{2,1}=8.4$	4.98, dd, $\mathrm{J}_{2,1}=8.4$	4.98, dd, J $\mathrm{J}^{\prime}, 1 \mathrm{l}=8.4$
	$\begin{aligned} & \mathrm{J}_{2,3}^{2,3}=9.6 \\ & 5.20, \mathrm{dd}, \mathrm{~J}_{3,2}=9.6 \end{aligned}$	$\begin{aligned} & \mathrm{J} 2,3=9.6 \\ & 5.22, \mathrm{dd}, \end{aligned}$$\mathrm{J}_{3 ; 2}=9.6$	$\begin{aligned} & \mathrm{J}_{2,3}=\text { obsc. } \\ & 5.22, \mathrm{dd}, \mathrm{~J}_{3,2}=9.6 \end{aligned}$	$\begin{aligned} & \mathrm{J}_{2,3}=9.6 \\ & 5.22, \mathrm{dd}, \mathrm{~J}{ }_{3,2}=9.6 \end{aligned}$	$\begin{aligned} & \mathrm{J}_{2,3}=\text { obsc. } \\ & 5.22, \mathrm{dd}, \mathrm{~J}_{3,2}=9.6 \end{aligned}$	$\begin{aligned} & \mathrm{J}_{2,3}=9.6 \\ & 5.22, \mathrm{dd}, \mathrm{~J}_{3,2}=9.6 \end{aligned}$	$\begin{aligned} & \mathrm{J}_{5,3,3}=\text { obsc. } \\ & 5.22, \mathrm{dd}, \mathrm{~J}_{3,2}=9.6 \end{aligned}$
$3 \prime$							
4^{\prime}	$\begin{aligned} & J_{3,4}=9.6 \\ & 5.08, \mathrm{dd}, \mathrm{~J} \mathrm{~J}_{4}=3=9.6 \end{aligned}$	$\begin{aligned} & J_{3.4}^{3,4}=9.6 \\ & 5.10, d d, \\ & { }_{4,3}=9.6 \end{aligned}$	$\begin{aligned} & J_{3,4}=9.6 \\ & 5.10, \mathrm{dd}, \mathrm{~J}{ }_{4: 3}=9.6 \end{aligned}$	$\begin{aligned} & \mathrm{J}_{3,4}=9.6 \\ & 5.10, \mathrm{dd}, \mathrm{~J}{ }_{4,3}=9.6 \end{aligned}$	$\begin{aligned} & \int_{3,4}=9.6 \\ & 5.10, \mathrm{dd}, \mathrm{~J},{ }_{4}^{4}=9.6 \end{aligned}$	$\begin{aligned} & J_{3,4}^{3,4}=9.6 \\ & 5.10, d d, J_{4,3}=9.6 \end{aligned}$	$\begin{aligned} & J_{3,4}=9.6 \\ & 5.10, \mathrm{dd}, \mathrm{~J}{ }_{4,3}=9.6 \end{aligned}$
5^{\prime}	$\begin{aligned} & \mathrm{J}_{4,5}=9.6 \\ & 3.74, \mathrm{ddd}, \mathrm{~J}_{5,4}=9.6 \end{aligned}$	$\begin{gathered} \mathrm{J} 4=9.5 \\ 5.76, \mathrm{ddd}, \\ \mathrm{~J}, 4=9.6 \end{gathered}$	$\begin{aligned} & \mathrm{J}_{4,5}=9.6 \\ & 3.76, \mathrm{ddd}, \mathrm{~J}_{5^{\prime}, 4}=9.6 \end{aligned}$	$\begin{aligned} & \mathrm{J}_{4,5}{ }^{4}=9.6 \\ & 3.76, \mathrm{ddd}, \mathrm{~J} 5_{5,4}=9.6 \end{aligned}$	$\begin{aligned} & J^{4}, 5=9.6 \\ & 53.76, \mathrm{ddd}, \mathrm{~J} 5^{\prime}, 4=9.6 \end{aligned}$	$\begin{aligned} & \mathrm{J}_{4,5}=9.6 \\ & 3.77, \mathrm{ddd}, \mathrm{~J}_{5,4}=9.6 \end{aligned}$	$\begin{aligned} & \mathrm{J}^{\prime}, 5=9.6 \\ & 6 \text { 3.76, ddd, J } 5_{5,4}=9.6 \end{aligned}$
6'a	$\begin{aligned} & J_{5^{\prime}, \sigma^{\prime}=2.4,}=2.4, \\ & 4.14, \mathrm{dd}^{5}=4.5 \\ & 4 \mathrm{~J}, 5=2.4 \end{aligned}$						
6’b	$\begin{aligned} & J_{\sigma^{6}, 6,6^{\prime} \mathrm{b}}=12.3 \\ & 4.29, \mathrm{dd}, \mathrm{~J}_{6,5,5}=4.5 \end{aligned}$	$\begin{aligned} & \mathrm{J}_{6,0 \mathrm{bb}}=12.3 \\ & 4.30 \mathrm{dd}, \\ & \int_{6 \mathrm{~b}, 5}=4.2 \end{aligned}$	$\begin{aligned} & J_{\sigma^{6}, 6,6 \mathrm{~b}}=12.3 \\ & 4.30, \mathrm{dd}, \mathrm{~J}_{6 \mathrm{~b}, 5}=4.4 \end{aligned}$	$\begin{aligned} & J_{\sigma^{6}, 6 \mathrm{~b}}=12.3 \\ & 4.30, \mathrm{dd}, \mathrm{~J}_{6 \mathrm{~b}, 5}=4.4 \end{aligned}$		$\begin{aligned} & J_{6^{6,6,6 \mathrm{~b}}}=12.3 \\ & 4.31, \mathrm{dd}, \mathrm{~J}, \mathrm{~b}, 5=4.5 \end{aligned}$	$\begin{aligned} & J_{6^{6}, 6^{\prime} \mathrm{b}}=12.3 \\ & 4.30, \mathrm{dd}, \mathrm{~J}_{6 \mathrm{~b}, 5^{\prime}}=4.2 \end{aligned}$
$\begin{gathered} -\mathrm{CO}_{2}{ }^{\mathrm{J}} \\ \mathrm{CH}_{3} \end{gathered}$	$\begin{aligned} & \mathrm{J}_{\text {6.,.6a }}=12.3 \\ & 3.70, \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{J} \begin{array}{l} 6, \mathrm{~b} \mathrm{~b}^{6}, \mathrm{~s}=12.3 \\ 3.71, \mathrm{~s} \end{array} \end{aligned}$	$\begin{aligned} & \mathrm{J}_{6 \mathrm{~b}, 6 \mathrm{a}=}=12.3 \\ & 3.71, \mathrm{~s} \end{aligned}$		$\begin{aligned} & \mathrm{J}_{6 \mathrm{~b}, \mathrm{~m}^{\mathrm{a}}=12.3}^{3.71,5} \end{aligned}$		$\begin{aligned} & \mathrm{J},{ }^{6} \mathrm{~b}, \mathrm{~s}^{2}=12.3 \\ & 3.71, \mathrm{~s} \end{aligned}$
a			6.38, d, $\mathrm{J}_{\alpha, \beta}=15.9$	6.39, d, J $\alpha_{\alpha, \beta}=15.9$	6.33, $\mathrm{d}, \mathrm{J} \alpha_{\alpha, \beta}=15$.	6.39, d, J $\alpha_{, \beta}=15$.	6.32, d, J ${ }_{\alpha, \beta}=15.9$
b		7.68, d,	7.65, d, $\mathrm{J}_{\beta, \alpha}=15$	7.66, d, J $\mathrm{J}, \alpha=15.9$	7.62, d, J $\beta_{\beta, u}=15.9$	$7.62, d, J_{\beta, \alpha}=15.9$	7.58, ${\mathrm{d}, \mathrm{J}_{\beta, \alpha}=15.9 ~}_{\text {d }}$
2 "			7.50-7.53	7.55, d, J $2^{\prime \prime} 3^{\prime \prime}=8.4$	7.53, d, J $2^{\prime \prime}, 3^{\prime \prime}=8.4$	7.38, d, J $\mathrm{z}^{\prime \prime} 6^{\prime \prime}=2.1$	7.35, d, J $2^{\prime \prime}, 6^{\prime \prime}=2.1$
3"'		7.38-7.40	7.37-7.40	7.13, d, J $3^{\prime \prime} 2^{\prime \prime}=8.4$	7.12, d, J $3^{\prime \prime} 2^{\prime \prime}=8.4$		
$4^{\prime \prime}$		7.38-7.40	7.37-7.40				
$5^{\prime \prime}$		7.38-7.40	7.37-7.40	7.13, d, J $5^{\prime \prime} 6^{\prime \prime}=8.4$	7.12, d, J $5^{\prime \prime} 6^{\prime \prime}=8.4$	7.24, d, J ${ }_{5}{ }^{\prime \prime} 6^{\prime \prime}=8.4$	7.22, d, J $5^{\prime \prime} 6^{\prime \prime}=8.4$
6 "		7.52-7.56	7.37-7.53	7.55, d, J $6^{\prime \prime} 5^{\prime \prime}=8.4$	7.53, d, J $6^{\prime \prime} 5^{\prime \prime}=8.4$	7.42, dd, $\mathrm{J}_{6}{ }^{\prime \prime}, 2^{\prime \prime}=2.1$	7.40, dd, $\mathrm{f}^{6}, 2^{\prime \prime}=2.1$
acetates	1.88, 1.99	1.90, 1.99	1.90, 2.00	1.90, 1.99	1.90, 2.00	J. $6^{\prime \prime}, 5^{\prime \prime}=8.4$ $1.90,1.99$	1.90, 2.01
	$\begin{aligned} & 1.99,2.02 \\ & \text { 2.06, } 2.09 \end{aligned}$	$\begin{aligned} & 2.00,2.03 \\ & 2.11 \end{aligned}$	$\begin{aligned} & 2.03,2.07 \\ & 2.10 \end{aligned}$	$\begin{aligned} & 2.00,2.04 \\ & 2.11,2.32 \end{aligned}$	$\begin{aligned} & 2.03,2.06 \\ & 2.10,2.31 \end{aligned}$	$\begin{aligned} & 2.01,2.04 \\ & 2.11,2.31 \\ & 2.32 \end{aligned}$	$\begin{aligned} & 2.04,2.06 \\ & 2.10,2.30 \\ & 2.31 \end{aligned}$

glucopyranosyl moiety at C-1 was confirmed as described for $\mathbf{2}$ and $\mathbf{3}$, as was the stereochemistry. Compound $\mathbf{5}$ was therefore determined to be 7-p-coumaryl-5-deoxypulchelloside I, named caudatoside D.

Caudatoside E (6) was shown to have the molecular formula $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{14}$ by analysis of the negative ion highresolution ESIMS ($\mathrm{m} / \mathrm{z} 567.1683\left[\mathrm{M}-\mathrm{H}^{-}\right.$). The ${ }^{1} \mathrm{H}$ NMR data of 6 (Table 1) were similar to the ${ }^{1} \mathrm{H}$ NMR data of 2 and 4 except for the aromatic region, which clearly showed the presence of either a caffeoyl or a feruloyl phenylpropanoid group sited at the O-6. HMBC was used to show that the methyl signal at $\delta 3.64$ was due to a methyl ester at C-4, as described above for $\mathbf{4}$, thus making the phenylpropanoid moiety a caffeoyl group. The glucopyranosyl moiety at C-1 was confirmed as described for $\mathbf{2}$ and $\mathbf{3}$, as was the stereochemistry. From these data, compound $\mathbf{6}$ was determined to be 6-caffeoyl-5-deoxypulchelloside I, named caudatoside E.

CaudatosideF (7) was shown to have the same molecular formula as $6, \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{14}$, by analysis of the negative ion high-resolution ESIMS (m/z 567.1464 [M - H] ${ }^{-}$). The ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{7}$ were very similar to the ${ }^{1} \mathrm{H}$ NMR data of 5 (Table 1) except for the aromatic region, again indicating 7 -substitution. The presence of a caffeoyl group was proven as for 6. The glucopyranosyl moiety at C-1 was confirmed as described for $\mathbf{2}$ and 3, as was the stereochemistry. From these data, compound 7 was determined to be 7-caffeoyl-5-deoxypulchelloside I, named caudatoside F.

Other plant parts of C. caudatum were collected along with the fruits. All parts were collected from Hawaii except one sample of stemwood, which was collected from Panama. Other Hawaiian samples include stems, stemwood, fruits/ inflorescence, and leaves. These five samples were extracted separately on a small scale with 95% ethanol for 24 h . These extracts were subjected to silica gel TLC as well as RP-TLC $\left(\mathrm{C}_{18}\right)$ al ong with the pure iridoids that were

Table 3. ${ }^{13} \mathrm{C}$ NMR Data for Compounds $\mathbf{1}-\mathbf{1 4}^{\mathrm{a}}$ (75 MHz , chemical shifts in δ, $\mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O}, \mathbf{2}-\mathbf{7}$ in Acetone d_{6}, and $\mathbf{8}-\mathbf{1 4}$ in CDCl_{3})

${ }^{\text {a }}$ Assignments were confirmed by HSQC and HMBC spectra at 300 MHz .

Figure 1. ROESY correlations observed for compound 2.
isolated as described above. All samples of C. caudatum showed the presence of these iridoids. The leaf and fruit/ inflorescence samples showed particularly strong bands corresponding to caudatosides A and B, and the Hawaiian stemwood sample showed a very strong band corresponding to 5-deoxypulchelloside I.

Caudatosides A-F are very similar to iridoids isolated from N. arbortristis. The basic N. arbortristis iridoid structure has the opposite stereochemistry at the 8-position and sometimes includes a hydroxyl on C-10. ${ }^{11-17} \mathrm{~N}$. arbortristis extracts have been shown to exhibit many types of biological activity. ${ }^{18-24}$ The acetone extract of C. caudatum showed weak activity against a cutaneous Leishmania axenic amastigote screen, but the chloroform extract showed somewhat better activity, suggesting that any antileishmanial activity may not be due to the iridoids. However, the pure iridoids have not yet been screened.

Experimental Section

General Experimental Procedures. Melting points were obtained on a Fisher-J ohn melting point apparatus and are uncorrected. Specific rotations were measured on a J asco DIP1000 digital polarimeter using a Na lamp at $28^{\circ} \mathrm{C}$. IR spectra were obtained on a Nicolet Nexus 670 FT-IR spectrometer as
films on a NaCl disk. NMR spectra were obtained on a Varian Mercury 300 MHz spectrometer equipped with a Sun Microsystems Ultra 5 processor and VNMR version 5.1b software. UV spectra were run on a Hewlett-Packard 8453 UV-visible spectrophotometer with data obtained via Hewlett-Packard UV-visible ChemStation software. Low- and high-resol ution mass spectra were conducted in the negative ion mode on a Micromass (Beverly, MA) quadrupole time-of-flight (Q-ToF 2) mass spectrometer with a modified dual micro-electrospray source for internal calibration. All high-resolution spectra were calibrated with poly(ethylene glycol) with an average mass of 600 Da. Samples 1-7 were electrosprayed from 1:1 methanol/ water, and samples 8-14 were electrosprayed from 9:1 methanol/chloroform (first dissolved in chloroform). Column chromatography was performed with 60-200 mesh silica gel (I.T. Baker), and flash reversed-phase column chromatography was performed with $40 \mu \mathrm{~m} \mathrm{C}_{18}$ adsorbent (J.T. Baker). Preparative TLC was performed on J.T. Baker $\mathrm{Si}-\mathrm{C}_{18} \mathrm{~F}$ reversedphase TLC plates $(20 \times 20 \mathrm{~cm}, 200 \mu \mathrm{~m}$ thickness). The compounds were visualized on TLC plates by short (254 nm) and long (366 nm) wavelength UV light and by spraying with 1% vanillin/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ followed by heating on a hot platefor 5 min . Solvents were reagent grade and used as purchased. Screens for activity against Leishmania amastigotes were conducted at the Walter Reed Army Institute of Research.

Plant Material. Samples of Citharexylum caudatum L. were col lected in Maui, Hawaii, in 1970 by Dr. Y oneo Sagawa of the University of Hawaii at Manoa, where voucher specimens (UH-619) are kept.

Extraction and Isolation. Dried, ground fruits of C. caudatum (1 kg) were extracted three times with petroleum ether (4 L each extraction), then three times with chloroform (4 L each), followed by four extractions with acetone (4 L each) and 95% ethanol (4 L each). The combined acetone extracts were concentrated in vacuo to give a light brown powder (56.1
g). This extract was subjected to column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by increasing amounts of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Eighteen fractions were collected. F ractions 10 and 11 were combined (3.4 g , eluting with $12.5-15 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), fractions 12 and 13 were combined (18.4 g , eluting with $15-17.5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), and fractions 14 and 15 were combined (17.8 g , eluting with $17.5-20 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2}-$ Cl_{2}). Combined fractions 10/11 were subjected to flash RP-CC using a gradient from 85:7.5:7.5 $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} / \mathrm{AcCN}$ to 0:50:50 $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} / \mathrm{AcCN}$. This column yielded $\mathbf{2}$ (477 mg , eluting with 50:25:25 $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} / \mathrm{AcCN}$) and 3 (644 mg , eluting with 40 : 30:30 H2O/MeOH/AcCN).

A portion of combined fractions $12 / 13(1.8 \mathrm{~g})$ was subjected to flash RP-CC using the same gradient as for combined fractions 10/11. This column yiel ded 4 (521 mg , el uting with 65:17.5:17.5 $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} / \mathrm{AcCN}$) and 5 (725 mg , eluting with 55:22.5:22.5 $\left.\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} / \mathrm{AcCN}\right)$.

A portion of combined fractions $14 / 15(2.0 \mathrm{~g})$ was subjected to flash RP-CC using a gradient from $93: 7 \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ to 100% MeOH . This column yielded 1 (1.34 g , nonretained) and a mixture of $\mathbf{6}$ and $\mathbf{7}$ (484 mg , eluting from 19% to $60 \% \mathrm{MeOH}$). A portion of this mixture of $\mathbf{6}$ and $\mathbf{7}(103 \mathrm{mg})$ was subjected to preparative RP-TLC using 60:25:15:0.1 $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} / \mathrm{AcCN} /$ trifluoroacetic acid. The bands were immediately marked and scraped after development and transferred into a flask containing acetonitrile, a small amount of NaHCO_{3}, and anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to avoid acyl transfer. After filtration and evaporation of the relevant fractions, pure $6(29 \mathrm{mg})$ and 7 $(46 \mathrm{mg})$ were obtained.

5-Deoxypulchelloside I (1): white crystalline solid (1.34 g); $\mathrm{mp} 94-97{ }^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}-112.7^{\circ}$ (c $0.0116,4: 1 \mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{CH}_{3}-$ $\mathrm{OH}) ; \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\log \epsilon): 237(4.41), 328 \mathrm{~nm}(3.21) ;$ IR (film, NaCl), $\nu_{\text {max }} 3372$ (OH), 2921, 1693, 1640, 1440, 1303, 1184, $1076 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}$) (Table 1); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 75 \mathrm{MHz}$) (Table 3); low-resolution ESIMS m/z 441.10 [$\mathrm{M}+\mathrm{Cl}]^{-}$.
Caudatoside A (2): tan solid (477 mg); mp 105-108 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{28}{ }_{\mathrm{D}}-75.2^{\circ}\left(\mathrm{c} 0.0108,4: 1 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{3} \mathrm{OH}\right)$; UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }$ ($\log \epsilon$) $278 \mathrm{~nm}(4.27)$; IR (film, NaCl$), v_{\max } 3385(\mathrm{OH}), 2949$, 1704, 1637, 1450, 1440, 1364, 1310, 1287, 1184, $1075 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (acetone- $\mathrm{d}_{6}, 300 \mathrm{MHz}$) (Table 1); ${ }^{13} \mathrm{C}$ NMR (acetone$\mathrm{d}_{6}, 75 \mathrm{MHz}$) (Table 3); high-resolution ESIMS m/z 571.1492 $\left[\mathrm{M}+\mathrm{Cl}^{-}\right.$(cal cd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{12}+\mathrm{Cl}, 571.1583$).

Caudatoside B (3): tan solid (644 mg); mp $112-115{ }^{\circ} \mathrm{C}$; $[\alpha]^{28}{ }_{\mathrm{D}}-80.4^{\circ}\left(\mathrm{c} 0.0108,4: 1 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{3} \mathrm{OH}\right)$; UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }$ ($\log \epsilon$) $278 \mathrm{~nm}(4.21)$; IR (film, NaCl$), v_{\text {max }} 3388$ (OH), 2936, 1702, 1638, 1440, 1286, 1182, $1075 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (acetone$\mathrm{d}_{6}, 300 \mathrm{MHz}$) (Table 1); ${ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}, 75 \mathrm{MHz}$) (Table 3); high-resolution ESIMS m/z $571.1522\left[\mathrm{M}+\mathrm{CI}^{-}\right.$(calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{12}+\mathrm{Cl}, 571.1583$).

Caudatoside C (4): light tan solid (521 mg); mp 111-114 ${ }^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}-88.7^{\circ}$ (c 0.0096, 4:1 $\left.\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{3} \mathrm{OH}\right)$; UV ($\mathrm{CH}_{3} \mathrm{OH}$) $\lambda_{\text {max }}(\log \epsilon) 233$ (4.08), $313 \mathrm{~nm}(4.22)$; IR (film, NaCl$), v_{\text {max }} 3377$ (OH), 2951, 1697, 1635, 1605, 1515, 1440, 1366, 1290, 1170, $1075 \mathrm{~cm}^{-1}$; ${ }^{1 \mathrm{H}}$ NMR (acetone-d ${ }_{6}, 300 \mathrm{MHz}$) (Table 1); ${ }^{13} \mathrm{C}$ NMR (acetone $\mathrm{d}_{6}, 75 \mathrm{MHz}$) (Table 3); high-resolution ESIMS m/z $587.1544\left[\mathrm{M}+\mathrm{Cl}^{-}\right.$(cal cd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{13}+\mathrm{Cl}, 587.1532$); 551.1723 [M - H] (cal cd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{13}, 551.1765$).

Caudatoside D (5): light tan solid (725 mg); mp 124-127 ${ }^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}-74.1^{\circ}$ (c 0.0096, 4:1 CH $\mathrm{CN}_{3} / \mathrm{CH}_{3} \mathrm{OH}$); UV ($\mathrm{CH}_{3} \mathrm{OH}$) $\lambda_{\text {max }}(\log \epsilon) 232(4.05), 314 \mathrm{~nm}(4.22)$; IR (film, NaCl$), \nu_{\max } 3377$ (OH), 2951, 1696, 1635, 1605, 1515, 1440, 1367, 1289, 1170, $1075 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (acetone-d $6,300 \mathrm{MHz}$) (Table 1); ${ }^{13} \mathrm{C}$ NMR (acetoned ${ }_{6}, 75 \mathrm{MHz}$) (Table 3); high-resol ution ESIMS m/z $587.1612\left[\mathrm{M}+\mathrm{Cl}^{-}\right.$(cal cd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{13}+\mathrm{Cl}, 587.1532$); 551.1797 [M - H] (cal cd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{13}, 551.1765$).

Caudatoside E (6): light tan solid (29 mg); mp $72-75^{\circ} \mathrm{C}$; $[\alpha]^{28}{ }_{\mathrm{D}}-41.6^{\circ}$ (c $\left.0.0084,4: 1 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{3} \mathrm{OH}\right)$; UV ($4: 1 \mathrm{CH}_{3} \mathrm{CN} /$ $\left.\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }}(\log \epsilon) 221$ (4.16), 235 (4.15), 297 (4.00), 325 nm (4.06); IR (film, NaCl), $v_{\max } 3381$ (OH), 2938, 1689, 1636, 1601, 1525, 1442, 1376, 1288, 1185, 1076, $988 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}, 300 \mathrm{MHz}$) (Table 1); ${ }^{13} \mathrm{C}$ NMR (acetone-d $6,75 \mathrm{MHz}$) (Table 3); high-resolution ESIMS m/z 603.1373 [M + CI](calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{14}+\mathrm{Cl}, 603.1481$); $567.1683[\mathrm{M}-\mathrm{H}]^{-}$(calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{14}, 567.1714$).

Caudatoside F (7): light tan solid (46 mg); mp 76-79 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{28}{ }_{\mathrm{D}}-57.3^{\circ}$ (c $\left.0.0084,4: 1 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{3} \mathrm{OH}\right)$; UV (4:1 CH3 3 CN/ $\left.\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\log \epsilon) 222(4.19), 235(4.19), 298$ (4.04), 324 nm (4.12); IR (film, NaCl), $v_{\text {max }} 3388$ (OH), 2939, 1686, 1636, 1602, 1524, 1442, 1374, 1287, 1184, 1077, $989 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone $\mathrm{d}_{6}, 300 \mathrm{MHz}$) (Table 1); ${ }^{13} \mathrm{C}$ NMR (acetone-d ${ }_{6}, 75 \mathrm{MHz}$) (Table 3); high-resolution ESIMS m/z $603.1353[\mathrm{M}+\mathrm{Cl}]^{-}$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{14}+\mathrm{Cl} 603.1481$); $567.1464[\mathrm{M}-\mathrm{H}]^{-}$(calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{14}, 567.1713$).

Acetylation of Compounds 1-7. Compounds $\mathbf{1 - 7}$ (20 mg, except compound $6,13 \mathrm{mg}$) were each treated with $\mathrm{Ac}_{2} \mathrm{O}$ (1 mL) and pyridine (1 mL) at room temperature for 24 h . The reaction mixture was suspended in 10 mL of $\mathrm{H}_{2} \mathrm{O}$, then subsequently extracted three times with CHCl_{3} (10 mL each). The combined CHCl_{3} layers were extracted twice with 1 N HCl (10 mL each), once with $5 \% \mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and finally once with saturated $\mathrm{NaCl}(10 \mathrm{~mL})$. E ach CHCl_{3} layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered to give compounds 8-14, respectively.

5-Deoxypulchelloside I hexaacetate (8): col orless amorphous solid (29 mg); UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}(\log \epsilon) 233$ (4.06), 281 nm (2.99); IR (film, NaCl), $v_{\text {max }}$ 2955, 1751, 1713, 1643, 1437, 1369, 1228, 1080, 1040, 910, $733 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ MHz) (Table 2); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 75 \mathrm{MHz}$) (Table 3); lowresolution ESIMS m/z $693.25\left[\mathrm{M}+\mathrm{Cl}^{-}\right.$.

Caudatoside A pentaacetate (9): colorless amorphous solid (27 mg); UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}(\log \epsilon) 281 \mathrm{~nm}(4.16)$; IR (film, $\mathrm{NaCl}), v_{\max } 2954,1757,1715,1639,1368,1229,1166,1078$, 1039, 912, $732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) (Table 2); ${ }^{13} \mathrm{C}$ NMR (CDCl $3,75 \mathrm{MHz}$) (Table 3); ESIMS m/z $781.31[\mathrm{M}+$ Cl^{-}.

Caudatoside B pentaacetate (10): colorless amorphous solid (29 mg); UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}(\log \epsilon) 281 \mathrm{~nm}(4.09)$; IR (film, $\mathrm{NaCl}), v_{\text {max }} 2954,1755,1714,1639,1368,1229,1165,1078$, 1040, 913, $733 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) (Table 2); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$) (Table 3); ESIMS m/z 781.31[M + Cl^{-}.

Caudatoside C hexaacetate (11): colorless amorphous solid (25 mg); UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}(\log \epsilon) 285 \mathrm{~nm}$ (3.98); IR (film, $\mathrm{NaCl}), v_{\text {max }} 2954,1758,1715,1640,1508,1369,1228,1165$, 1079, 1039, 912, $733 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) (Table 2); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$) (Table 3); ESIMS m/z 839.31 $[\mathrm{M}+\mathrm{Cl}]^{-}$.

Caudatoside D hexaacetate (12): colorless amorphous solid (25 mg); UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}(\log \epsilon) 285 \mathrm{~nm}$ (3.99); IR (film, $\mathrm{NaCl}), v_{\text {max }} 2953,1755,1714,1639,1508,1370,1228,1164$, 1079, 1040, 913, $733 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) (Table 2); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$) (Table 3); ESIMS m/z 839.31 $[\mathrm{M}+\mathrm{Cl}]^{-}$.

Caudatoside E heptaacetate (13): colorless amorphous solid (15 mg); UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}(\log \epsilon) 284 \mathrm{~nm}$ (4.07); IR (film, $\mathrm{NaCl}), v_{\text {max }} 2956,1756,1714,1641,1505,1435,1371,1228$, 1180, 1040, 991, 906, $735 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) (Table 2); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$) (Table 3); ESIMS m/z $897.34[\mathrm{M}+\mathrm{Cl}]^{-}$

Caudatoside F heptaacetate (14): col orless amorphous solid (24 mg); UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}(\log \epsilon) 282 \mathrm{~nm}$ (4.18); IR (film, $\mathrm{NaCl}), v_{\max } 2954,1756,1714,1640,1505,1436,1371,1218$, 1180, 1111, 1078, 1040, 991, 905, $872 \mathrm{~cm}^{-1}$; 1 H NMR (CDCl_{3}, 300 MHz) (Table 2); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$) (Table 3); ESIMS m/z $897.31\left[\mathrm{M}+\mathrm{Cl}^{-}\right.$.

Acknowledgment. This work was supported by a grant from the Thomas F. J effress and Kate Miller J effress Memorial Trust, and the Department of Chemistry at VCU. We would like to gratefully acknowledge J ason Flora and Dr. David Muddiman of the VCU Mass Spectrometry Resource Center for obtaining the mass spectrometry data. D.S.A. wishes to acknowledge a grant from theVCU School of Graduate Studies Graduate Student Grant-In-Aid Program.

References and Notes

(1) Moldenke, H. N. Phytol ogia 1958, 6 (5), 262-310.
(2) El-Naggar, L. J .; Beal, J. L. J . Nat. Prod. 1980, 43 (6), 649-707.
(3) Ghisal berti, E. L. Phytomedicine 1998, 5 (2), 147-163.
(4) Ganapathy, S.; Venkata Rao, D. Fitoterapia 1983, 44 (1), 13-15.
(5) Ganapaty, S.; Heni, J .; Venkata Rao, D.; Rimpler, H. Planta Med 1988, 42-43
(6) Khalifa, T. I.; El-Gindi, O. D.; Ammar, H. A.; EI-Naggar, D. M. Asian J. Chem. 2002, 14 (1), 197-202.
(7) Foderaro, T. A.; Stermitz, F. R. Phytochemistry 1992, 31 (12), 41914195.
8) Krull, R. E.; Stermitz, F. R. Phytochemi stry 1998, 49 (8), 2413-2415
(9) Tekeda, Y.; Yagi, T.; Matsumoto, T.; Honda, G.; Tabata, M.; Fujita, T.; Shingu, T.; Otsuka, H.; Sezik, E.; Yesilada, E. Phytochemistry 1996, 42 (4), 1'085-1088.
(10) Tekeda, Y.; Ooiso, Y.; Masuda, T.; Honda, G.; Otsuka, H.; Sezik, E.; Yesilada, E. Phytochemistry 1996, 49 (3), 787-791.
(11) Rimpler, H.; J unghanns, J. U. Tetrahedron Lett. 1975, 29, 24232424.
(12) Purushothaman, K. K.; Venkatanarasimhan, M.; Sarada, A. Phytochemistry 1985, 24 (4), 773-776.
(13) Tandon, J. S.; Rathore, A.; J uneja, R. K. Phytochemistry 1989, 28 (7), 1913-1917
(14) Tandon, J. S.; Srivastava, V.; Rathore, A.; Ali, S. M. J. Nat. Prod. 1990, 53 (2), 303-308.
(15) Tandon, J. S.; Rathore, A.; Srivastava, V.; Srivastava, K. C. Phytochemistry 1990, 29 (6), 1917-1920.
(16) Kundu, A. B.; Venkatanarasimhan, M. J . Ind. Chem. Soc. 1991, 68, 581-584.
(17) Tandon, J. S.; Singh, K. L.; Roy, R.; Srivastava, V. J . Nat. Prod. 1995, 58 (10), 1562-1564.
(18) Badam, L.; Rao, T. L. G.; Wagh, U. V. Ind. J . Parasit. 1987, 11 (1), 13-14.
(19) Tandon, J . S.; Srivastava, V.; Guru, P. Y. J. Nat. Prod. 1991, 54 (4), 1102-1104.
(20) Puri, A.; Saxena, R.; Saxena, R. P.; Saxena, K. C.; Srivastava, V.; Tandon, J. S. J. Ethnopharmacol. 1994, 42, 31-37.
(21) Paul, B. N.; Saxena, A. K. J . Ethnopharmacol. 1997, 56, 153-158.
(22) Talakal, T. S.; Dwivedi, S. K.; Shamra, S. R. Pharm. Biol. 2000, 38 (5), 326-329.
(23) Gyanchandani, A.; Khan, Z. K.; Maitra, S. C. Pharm. Biol. 2000, 38 (5), 340-352.
(24) Khatune, N. A.; Mosaddik, M. A.; Haque, M. E. Fitoterapia 2001, 72, 412-414. <
NP020211C

[^0]: * To whom correspondence should be addressed. Tel: (804) 828-1674. Fax: (804) 828-2171. E-mail: atsneden@vcu.edu.

